Non-weakly almost periodic recurrent points and distributionally scrambled sets on Σ2×S1
نویسندگان
چکیده
منابع مشابه
Weakly Almost Periodic Functions and Thin Sets in Discrete Groups
A subset E of an infinite discrete group G is called (i) an Rw-set if any bounded function on G supported by E is weakly almost periodic, (ii) a weak p-Sidon set (1 ~ p < 2) if on II (E) the IP -norm is bounded by a constant times the maximal C·-norm of I\G) , (iii) a T-set if xE n E and Ex n E are finite whenever x of e, and (iv) an FT-set if it is a finite union of T-sets. In this paper, we s...
متن کاملAlmost Weakly 2-Generic Sets
There is a family of questions in relativized complexity theory|weak analogs of the Friedberg Jump-Inversion Theorem|that are resolved by 1-generic sets but which cannot be resolved by essentially any weaker notion of genericity. This paper deenes aw2-generic sets, i.e., sets which meet every dense set of strings that is r.e. in some incomplete r.e. set. Aw2-generic sets are very close to 1-gen...
متن کاملFilters and the Weakly Almost Periodic Compactification of a Semitopological Semigroup
Let $S$ be a semitopological semigroup. The $wap-$ compactification of semigroup S, is a compact semitopological semigroup with certain universal properties relative to the original semigroup, and the $Lmc-$ compactification of semigroup $S$ is a universal semigroup compactification of $S$, which are denoted by $S^{wap}$ and $S^{Lmc}$ respectively. In this paper, an internal construction of ...
متن کاملComplexity of Weakly Almost Periodic Functions
Given a topological group G let C(G) denote the Banach space of bounded, continous real valued function on G. Eberlein [1] defined a function f ∈ C(G) to be weakly almost periodic if the weak closure of all of its translates is compact in the weak topology on C(G) — in other words, if fx(y) is defined to be f(yx−1) then the weak closure of {fx | x ∈ G} is weakly compact. The set of weakly almos...
متن کاملINCLUSION RELATIONS CONCERNING WEAKLY ALMOST PERIODIC FUNCTIONS AND FUNCTIONS VANISHING AT INFINITY
We consider the space of weakly almost periodic functions on a transformation semigroup (S, X , ?) and show that if X is a locally compact noncompact uniform space, and ? is a separately continuous, separately proper, and equicontinuous action of S on X, then every continuous function on X, vanishing at infinity is weakly almost periodic. We also use a number of diverse examples to show ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2014
ISSN: 0166-8641
DOI: 10.1016/j.topol.2013.11.011